Back

ⓘ 数学, 教科. 数学 (すうがく、英: mathematics, math )は、中等教育の課程(中学校の課程、高等学校の課程、中等教育学校の課程など)における教科の一つである。 本項目 ..




                                     

ⓘ 数学 (教科)

数学 (すうがく、英: mathematics, math )は、中等教育の課程(中学校の課程、高等学校の課程、中等教育学校の課程など)における教科の一つである。

本項目では、主として現在の学校教育における数学について取り扱う。関連する理論・実践・歴史などについては「算数・数学教育」を参照。

                                     

1. 概要

数学においては、学問などにおける数学の基礎が学ばれる。初等教育(小学校など)課程における算数を引き継ぎ、さらに高度な数理的な考え方を身に付けることを目的とした教科である。数学は、「国語」、「英語」と共に主要3教科と呼ばれる。

ちなみに算数との違いは、計算式において文字および負の数を扱うか否かである。それに伴い数学では方程式を本格的に扱うことになる。また、前期中等教育課程では無理数が、後期中等教育課程では虚数と複素数が登場し、数の概念がさらに拡大される。

                                     

2. 学習内容

以下に、現行の日本における教科「数学」における学習範囲を示すが、その具体的な内容は、各記事を参照されたい。

                                     

2.1. 学習内容 前期中等教育(中学校、中等教育学校の前期課程など)

※本項での「公立中学(校)」は前期中等教育のみを行う3年制の市区町村立中学校のみを指し、公立中等教育学校・中高一貫校は含まないことを予め断っておく。

学習指導要領により、前期中等教育では以下のことが学習される(詳細は中学校数学Wikibooksを参照)。新しい学習指導要領が先行実施されてから統計学の内容が全面的に復活したことに伴い、「数量関係」が「関数」と「資料の活用」に分けられた。

  • 正の数・負の数 - 正の数・負の数の定義とそれらの四則計算
  • 四則演算の可能性と数の集合
  • 累乗
  • 絶対値
  • 数と式(初等代数学)
  • 代数の方法による式や法則の説明・証明
  • 不等号を用いた数量の比較(ただし不等式は高等学校「数学I」)
  • 文字式 - 文字式同士の四則計算、交換法則・結合法則・分配法則
  • 連立方程式(二元一次に限る)
  • 素数・素因数分解
  • 有理数と無理数
  • 平方根
  • 一次方程式
  • 二次方程式 - 解の公式、平方完成
  • 因数分解
  • 多角形の角度
  • 対称性
  • 図形(初等幾何学)
  • 図形の移動(平行移動・対称移動・回転移動)
  • 平面図形
  • 三角形や四角形の内接円・外接円
  • 角の二等分線
  • 線分の垂直二等分線
  • 作図
  • 三角形の合同条件・性質
  • 平行と合同(中学3年で学習)
  • 平行四辺形の性質
  • 平行線の性質(同位角・錯角)
  • 証明
  • 相似比と面積比・体積比の関係
  • 中点連結定理
  • 相似(中学2年で学習)
  • 円周角の定理と中心角
  • 球の体積と表面積(中学3年で学習)
  • 空間図形
  • 投影図(平面図・立面図・側面図)
  • 正多面体
  • 見取図・展開図
  • ねじれの位置の把握
  • 立体の相似
  • 三平方の定理
  • 比例・反比例
  • 関数
  • 比例式
  • 関数の定義
  • 座標
  • いろいろな事象と関数
  • 2乗に比例する関数(二次関数の初歩)
  • 一次関数とそのグラフ(変化の割合・傾き 数学)(中学3年で学習)
  • 箱ひげ図・四分位範囲
  • 標本調査
  • 整理のしかた
  • 資料の活用(確率・統計)
  • 確率(中学3年で学習)
  • 資料の整理 - 度数分布表とヒストグラム、中央値・最頻値・範囲・相対度数など

中高一貫校によっては代数・関数・確率・統計を「代数」、図形・計量を「幾何」と分け、並行して授業が行なわれることがある。システム数学や体系数学をはじめこのような分け方に対応した検定外教科書も販売されている。特に幾何分野は検定教科書では体系的な学習が不可能なので採用されることが多い。



                                     

2.2. 学習内容 後期中等教育(高等学校、中等教育学校の後期課程など)

後期中等教育「数学」の内容は学習指導要領の改訂時に何度かその名称を変えてきた。戦後間もない頃や1978年告示、および1982年度から1993年度入学生に対して実施のものでは具体的な内容表記(「代数・幾何」「基礎解析」など)だったが、1956年告示、1960年告示、1971年告示、1989年告示、1999年告示、2009年告示のようにすべてローマ数字とアルファベットの組み合わせの科目名(「数学II」「数学III」など)になっている 。また、「応用数学」(71年告示)「数学基礎」(99年告示)のように新設・廃止されたものもある。

解析学を中心に学ぶ(特に関数がメイン)のが「数学I、II」であるが、現在は代数学の内容も一部含む「数学I、II、III」と、幾何学・代数学・確率・統計・コンピュータを学ぶ「数学A、B」が中心となっている。大体において、高校1年次に「数学I」「数学A」を、2年次に「数学II」「数学B」、3年次に「数学III」を履修する。

以下に示す内容は、2012~2021年度に入学した場合のものである。「前課程」とは2003~2011年度に入学した場合である。「前々課程」とは1994~2002年度に入学した場合である。また新課程は2022年度から実施される。

                                     

2.3. 学習内容 普通教科「数学」における学習内容

  • 二次方程式 - 判別式
  • 方程式と不等式
  • 「数学I」(初等代数学・数理論理学・初等関数論・初等幾何学・統計学)(標準単位数3単位)
  • 数と式 - 実数(有理数と無理数、分数と循環小数)、指数法則の一部、式の展開、因数分解(前々課程では数学Aで学習)
  • 命題と証明
  • 集合と要素の個数
  • 集合と論理
  • 二次関数の値の変化 - 二次関数の移動、最大・最小
  • 二次関数とそのグラフ
  • 二次関数
  • 二次不等式
  • 三角比と図形 - 正弦定理、余弦定理、図形の計量
  • 三角比 - 正弦・余弦・正接、三角比の相互関係
  • 図形と計量
  • 資料の分析 - 代表値(初出は中学1年)、分散、標準偏差、相関係数
  • 表計算ソフトの活用
  • 資料の整理 - 度数分布表とヒストグラム(初出は小学6年)、散布図と相関表
  • データの分析
  • 高次方程式 - 複素数と二次方程式、高次方程式
  • 式と証明・高次方程式
  • 二項定理(前課程では数学Aで学習)
  • 式と証明 - 多項式の除法、分数式、因数定理、等式と不等式の証明(前々課程では数学Aで学習)
  • 「数学II」(初等代数学・解析幾何学・初等関数論・微分積分学)(標準単位数4単位)
  • 円- 円の方程式、円と直線
  • 点と直線 - 点の座標、直線の方程式
  • 図形と方程式
  • 三角関数 - 角の拡張(弧度法)、三角関数とその基本的な性質、三角関数の加法定理(弧度法は前々課程では数学IIIで学習)
  • いろいろな関数
  • 指数関数と対数関数 - 指数の拡張、指数関数、対数関数
  • 微分・積分の考え(多項式関数に限る)
  • 微分の考え - 微分係数と導関数、導関数の応用、接線、極値、高次多項式関数とそのグラフ
  • 積分の考え - 不定積分と定積分、積分の応用として面積
  • 図形の複素平面での表現
  • 極形式、ド・モアブルの定理
  • 複素平面(現課程で復活)
  • 「数学III」(複素関数論・解析幾何学・初等関数論・微分積分学)(標準単位数5単位)
  • 複素平面
  • 二次曲線 - 放物線、楕円と双曲線
  • 式と曲線
  • 媒介変数表示と極座標 - 曲線の媒介変数表示、極座標と極方程式、焦点、準線
  • いろいろな関数 - 分数関数と無理関数、合成関数と逆関数
  • 関数の極限 - 関数値の極限
  • 関数と極限
  • 数列の極限 - 数列の極限、無限等比級数の和
  • 導関数 - 関数の和・差・積・商の導関数、合成関数の導関数、三角関数・指数関数・対数関数の導関数、高次導関数
  • 導関数の応用 - 接線・法線、関数値の増減、第二次導関数の応用(グラフの凹凸)、速度、加速度
  • 微分法
  • 不定積分と定積分 - 積分とその基本的な性質、簡単な置換積分法・部分積分法、いろいろな関数の積分
  • 積分法
  • 積分の応用 - 面積、体積、曲線の長さ
  • 作図
  • 平面図形
  • 三角形の性質 - 重心、円に内接・外接する三角形(前々課程では重心を中学2年、円に内接・外接する三角形を中学3年で学習)
  • 「数学A」(初等幾何学・確率論)(標準単位数2単位)
  • 円の性質(2001年度までは方べきの定理を除き中学3年で学習) - 円と接線、二つの円の接線・中心同士の距離、円周角の定理の逆、円に内接する四角形、方べきの定理
  • オイラーの多面体定理
  • 空間の垂直・平行
  • 空間図形
  • 独立な試行と確率
  • 確率とその基本的な性質
  • 場合の数と確率(前々課程では数学Iで学習)
  • 順列・組合せ
  • 「数学B」(初等代数学・線形代数学・統計学)
  • 漸化式と数学的帰納法
  • 数列とその和 - 等差数列、等比数列、いろいろな数列
  • 数列
  • 平面上のベクトル - ベクトルとその演算、ベクトルの内積
  • 空間におけるベクトル
  • ベクトル
  • 確率分布 - 確率変数と確率分布、二項分布
  • 確率分布(前課程では期待値を数学Aで、他は数学Cで学習)
  • 期待値
  • 統計処理
  • 統計的な推測 - 母集団と標本、統計的な推測の考え
  • 正規分布 - 連続型確率変数、正規分布
  • 「数学活用」 数学と人間や社会とのかかわりについて学習し、数学を活用する能力を養う。将来上級学校での学習や職業でより高度な数学を使う生徒以外を対象として、数学に将来にわたって親しむ力を身に着けることを目的とする。
  • 数学と人間の活動
  • 数や図形と人間の活動
  • 遊びの中の数学
  • データの分析(統計)
  • コンピュータの活用、数学史、経済学とのかかわりについても学習をするとしている。
  • 数学的な表現の工夫 図・表・離散グラフ・行列の活用。前教育課程で学習した「行列」はここでしか残らなかった。行列・行列式・一次変換については、大学初学年で線形代数の授業で取り扱われる。
  • 社会生活と数学
  • 社会生活における数理的な考察

なお、「数学C」(線形代数など)は現課程では廃止されている。

                                     

2.4. 学習内容 普通教科「数学」における新課程の学習内容

  • 数と式 - 実数(有理数と無理数、分数と循環小数)、指数法則の一部、式の展開、因数分解
  • 一次不等式
  • 「数学I」(標準単位数3単位)
  • 二次方程式 - 判別式
  • 集合と命題
  • 数と式
  • 図形と計量
  • 三角比
  • 正弦定理・余弦定理
  • 二次関数とそのグラフ
  • 二次関数
  • 二次不等式
  • 二次関数の値の変化 - 二次関数の移動、最大・最小
  • 分散・標準偏差・散布図・相関係数
  • 仮説検定
  • データの分析
  • コンピュータの活用
  • 三次の乗法公式・因数分解の公式、式の展開、因数分解
  • 式と証明 - 多項式の除法、分数式、因数定理、等式と不等式の証明
  • 「数学II」(標準単位数4単位)
  • 高次方程式 - 複素数と二次方程式、高次方程式
  • いろいろな式 
  • 点と直線 - 点の座標、直線の方程式
  • 図形と方程式
  • 軌跡
  • 円- 円の方程式、円と直線
  • 不等式と領域
  • 内分・外分、二点間の距離
  • いろいろな関数
  • 指数関数と対数関数 - 指数の拡張、指数関数、対数関数
  • 三角関数 - 三角関数とその基本的な性質、三角関数の加法定理、2倍角の公式、三角関数の合成
  • 微分の考え - 微分係数と導関数、導関数の応用、接線、極値、高次多項式関数とそのグラフ
  • 微分・積分の考え(三次までの多項式関数に限る)
  • 積分の考え - 不定積分と定積分、図形の面積
  • 分数関数・無理関数
  • 数列の極限 - 数列の極限、無限級数の収束・発散・和
  • 極限
  • 「数学III」(標準単位数3単位)
  • 合成関数・逆関数
  • 関数の極限 - 関数値の極限
  • 導関数 - 関数の和・差・積・商の導関数、合成関数の導関数、三角関数・指数関数・対数関数の導関数、高次導関数
  • 微分法
  • 導関数の応用 - 接線・法線、関数値の増減、第二次導関数の応用(グラフの凹凸)、速度、加速度
  • 積分の応用 - 面積、体積、曲線の長さ
  • 不定積分と定積分 - 積分とその基本的な性質、簡単な置換積分法・部分積分法、いろいろな関数の積分
  • 積分法
  • 図形の性質
  • 空間図形
  • 「数学A」(標準単位数2単位:以下の項目から適宜選択して履修する)
  • 三角形の性質
  • 円の性質
  • 集合の要素の個数、数え上げの原則
  • 順列・組合せ
  • 場合の数と確率
  • 確率とその基本的な性質、期待値
  • 独立な試行と確率
  • 条件付き確率
  • 数学と人間の活動
  • 座標
  • 数量や図形と人間の活動
  • 二進法
  • 整数の約数と倍数
  • ユークリッドの互除法
  • 数学と文化 - 数学史、ゲームやパズル
  • 「数学B」(標準単位数2単位:以下の項目から適宜選択して履修する)
  • 数列とその和 - 等差数列、等比数列、いろいろな数列
  • 数学的帰納法
  • 漸化式
  • 数列
  • 確率変数・確率分布
  • 標本調査
  • 二項分布・正規分布
  • 統計的な推測
  • 区間推定・仮説検定
  • 数学と社会生活
  • ベクトル
  • 平面ベクトル
  • 「数学C」(標準単位数2単位:以下の項目から適宜選択して履修する)
  • 空間ベクトル
  • ベクトルの内積
  • 極座標・極方程式
  • 二次曲線
  • 複素数平面
  • ド・モアブルの定理
  • 平面上の曲線と複素数平面
  • 曲線の媒介変数表示
  • 数学的な表現の工夫 図・表・離散グラフ・行列の活用


                                     

2.5. 学習内容 専門学科設置校「数学」における学習内容

  • 数と式 - 実数(有理数と無理数、分数と循環小数)、指数法則の一部、式の展開、因数分解
  • 二次方程式 - 判別式
  • 方程式と不等式
  • 「数学I」(標準単位数4単位)※必須科目
  • 集合と論理
  • 命題と証明
  • 集合と要素の個数
  • 二次関数
  • 二次関数の値の変化 - 二次関数の移動、最大・最小
  • 二次関数とそのグラフ
  • 二次不等式
  • 三角比と図形 - 正弦定理、余弦定理、図形の計量
  • 三角比 - 正弦・余弦・正接、三角比の相互関係
  • 図形と計量
  • データの分析
  • 資料の分析 - 代表値(初出は中学1年)、分散、標準偏差、相関係数
  • 資料の整理 - 度数分布表とヒストグラム(初出は小学6年)、散布図と相関表
                                     

2.6. 学習内容 専門教科「理数」における学習内容

  • 理数数学I
  • 二次関数
  • 図形と計量
  • 方程式と不等式
  • 場合の数と確率
  • 数列
  • 積分法
  • 図形と方程式
  • 命題と論理
  • いろいろな関数
  • 整式と高次方程式
  • 理数数学II
  • 微分法
  • 極限
  • 理数数学探究
  • 式と曲線
  • 確率分布
  • 統計処理
  • 行列とその応用
  • ベクトル
  • 数値計算とコンピュータ
  • 課題研究
  • 統計とコンピュータ
                                     

2.7. 学習内容 新学習指導要領における専門教科「理数」における学習内容

  • 場合の数と確率
  • データの分析
  • 数と式 - ユークリッドの互除法、二進法を含む
  • 理数数学I
  • 指数関数・対数関数
  • 図形と計量
  • 二次関数
  • いろいろな式 - 最小公約数・最大公倍数を含む
  • 微分法
  • 理数数学II
  • 統計的な推測
  • 図形と方程式 - 円と円の共有点を含む
  • 積分法 - 簡単な微分方程式を含む
  • 極限
  • 三角関数と複素数平面
  • 数列
  • 離散グラフ
  • 行列とその応用 - 行列、逆行列、連立一次方程式の解法、点の移動
  • 数学と生活や社会との関わり
  • ベクトル - 空間における直線や平面の方程式を含む
  • 理数数学探究(以下の項目から適宜選択して履修する)
                                     

3. 大学入試における数学

2019年現在の文系諸学部では、数学IIIは全て課されない。

  • 理系学部では大多数の大学で必須I,II,III,A,B又は理科と選択をしなければならない。そのため、大学入試を考慮した上で文系と理系の区別がなされる高等学校においては、通常文系が数学I,II,A,Bを学習し、理系はそこから更にIIIを学習する。
  • 数学A,Bは、内容を選択して履修する科目である。教科書で設定されている授業時間どおりに履修する場合、各3~4分野のうち2分野を履修するとちょうど規定の授業時間に相当するようになっている。大学入試センター試験の「数学I・数学A」「数学II・数学B」でも、数学Bについては2分野を履修していることを想定した出題となっている(3~4分野それぞれの問題を出題し、2分野を選択解答する)。ただし多くの高等学校では生徒が自由に選択するのではなく、あらかじめ履修する分野が指定されて開講される。大学入試を目標とする進学校の場合、大学入試では数学Bの「確率分布」「統計処理」が出題範囲から外されるか、他の分野との選択となっている場合が多く、この分野の授業を行わない高等学校もある。参考書でも、多くのものがこれらの分野を省いたかたちで販売している。
  • 文系学部では、私立大学の場合は数学は不要か、数学I,A+II,Bと地理歴史の選択ができる場合が多い。国立大学文系では大学入試センター試験で必須、難関大学では2次試験でも学部学科によらず必須とするのが通常であるが、出題範囲は私立文系と概ね同じである。私立文系が経済学部であっても入学試験で数学を必須としないのは、必須とすると受験者が減ってしまうためであって、 入学後に数学が不要であるからではない。大学進学後は、文科系の学部学科においても経済学、統計学など数学を必要とする分野が広範囲に存在する上、数学III程度の内容は理解していることを前提に数学教育がおこなわれることも少なくない 。
  • 京都大学は2005年より文系学部において数学Cの「行列とその応用」を入試に課していたが、2008年より再び課されないことになった。ただし、数学Cの「確率分布」のうち「確率の計算」(含、条件付き確率)については、他の幾つかの大学と同様、引き続き文系・理系を問わず出題範囲に含まれている。


                                     

3.1. 大学入試における数学 備考

1994年度から2002年度に高校に入学した場合の課程では複素数平面を数学Bで扱っていた。この内容は、現課程において数学IIIで再登場している。ゆとり教育他の弊害も加わって、2020年9月の高校数学は大学進学率が16%を切っていた世代の2/3ほどの内容である。

                                     

4. 参考文献・URL

  • 中学校学習指導要領「第3節 数学」
  • 高等学校学習指導要領「第9節 理数」
  • 平成18年度センター試験 試験問題評価委員会報告書
  • 高等学校学習指導要領「第4節 数学」
                                     

5. 関連項目

  • 数学I - 数学II
  • 中等教育 - 学習指導要領
  • 文系と理系 - 理科離れ - 暗記数学 - 数学パズル
  • 算数・数学教育
  • 教科 - 教科の一覧 - 五教科
  • 数学 - 代数学、幾何学、解析学、統計学